Abstract

We have detected by nucleotide analog interference mapping (NAIM) purine N7 functional groups in Escherichia coli RNase P RNA that are important for tRNA binding under moderate salt conditions (0.1 M Mg2+, 0.1 M NH4+). The majority of identified positions represent highly or universally conserved nucleotides. Our assay system allowed us, for the first time, to identify c7-deaza interference effects at two G residues (G292, G306). Several c7-deazaadenine interference effects (A62, A65, A136, A249, A334, A351) have also been identified in other studies performed at very different salt concentrations, either selecting for substrate binding in the presence of 0.025 M Ca2+ and 1 M NH4+ or self-cleavage of a ptRNA-RNase P RNA conjugate in the presence of 3 M NH4+ or Na+. This indicates that these N7 functional groups play a key role in the structural organization of ribozyme-substrate and -product complexes. We further observed that a c7-deaza modification at A76 of tRNA interferes with tRNA binding to and ptRNA processing by E. coli RNase P RNA. This finding combined with the strong c7-deaza interference at G292 of RNase P RNA supports a model in which substrate and product binding to E. coli RNase P RNA involves the formation of intermolecular base triples (A258-G292-C75 and G291-G259-A76).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call