Abstract

Purine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined deficiencies in purine metabolism. C. psittaci AA Mp cannot synthesize purines de novo, as assessed by its inability to incorporate exogenous glycine into nucleic acid purines. C. psittaci AA Mp can take ATP and GTP, but not dATP or dGTP, directly from the host cell. Exogenous hypoxanthine and inosine were not utilized by the parasite. In contrast, exogenous adenine, adenosine, and guanine were directly salvaged by C. psittaci AA Mp. Crude extract prepared from highly purified C. psittaci AA Mp reticulate bodies contained adenine and guanine but no hypoxanthine phosphoribosyltransferase activity. Adenosine kinase activity was detected, but guanosine kinase activity was not. There was no competition for incorporation into nucleic acid between adenine and guanine, and high-performance liquid chromatography profiles of radiolabelled nucleic acid nucleobases indicated that adenine, adenosine, and deoxyadenosine were incorporated only into adenine and that guanine, guanosine, and deoxyguanosine were incorporated only into guanine. Thus, there is no interconversion of nucleotides. Deoxyadenosine and deoxyguanosine were cleaved to adenine and guanine before being utilized, and purine (deoxy)nucleoside phosphorylase activity was present in reticulate body extract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.