Abstract

An experiment was conducted with dairy cows to study the partitioning of excreted purine derivatives between urine and milk and to quantify the endogenous contribution following the isotopic labeling of microbial purine bases. Three lactating cows in their second lactation that had been cannulated in the rumen and the duodenum were fed a mixed diet (48:52, roughage/concentrate ratio) distributed in equal fractions every 2h, and duodenal flow of purine bases was determined by the dual-phase marker system. Nitrogen-15 was infused continuously into the rumen to label microbial purine bases, and the endogenous fraction was determined from the isotopic dilution in urinary purine derivatives. Urinary and milk recovery of duodenal purine bases were estimated at early (wk 10) and late (wk 33) lactation by the duodenal infusion of incremental doses (75 and 150mmol purine bases/d) of RNA from Torula yeast. Each period was 6 d, with RNA being infused during the last 4 d, followed by measurement of the flow of purine bases to the duodenum. The isotope dilution of purine derivatives in urine samples confirmed the presence of an endogenous fraction (512±36.43μmol/W0.75 or 56.86mmol/d) amounting to 26±3.8% of total renal excretion. Total excretion of purine derivatives in urine plus milk was linearly related to the duodenal input of purine bases, but the slopes differed (P<0.005) between lactation stages resulting in a lower equimolar recovery in early (y=58.86 (±3.89)+0.56(±0.0164) x; r=0.90) than late lactation (y=58.86 (±3.89)+0.70 (±0.046) x; r=0.80). Excretion of purine derivatives through milk represented a minimum fraction of total excretion but responded significantly to the duodenal input of purine bases. No differences between lactation stages were detected, and variations in milk yield did modify significantly the amount of purine derivatives excreted through the milk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.