Abstract

The effect of highly purified rat liver cytosolic NAD(P)H-quinone oxidoreductase [EC 1.6.99.2] on the mutagenicity of 1,3- 1,6- and 1,8-dinitropyrene (DNP) was studied in the Ames Salmonella typhimurium mutagenicity assay. NAD(P)H-quinone oxidoreductase over the range of 0.02-0.8 micrograms/plate (38-1500) units increased up to threefold the mutagenicity of all three DNPs in S. typhimurium TA 98. In TA98NR, a strain deficient in "classical" nitro-reductase, the mutagenicity of 1,6- and 1,8-DNP was essentially unchanged, whereas that of 1,3-DNP was markedly reduced. NAD(P)H-quinone oxidoreductase enhanced the mutagenicity of 1,6- and 1,8-DNP to approximately equivalent extents in TA98NR and TA98. The mutagenicity of 1,3-DNP in TA98NR was potently enhanced by the addition of NAD(P)H-quinone oxidoreductase in a dose-responsive manner. In the presence of 0.8 micrograms NAD(P)H-quinone oxidoreductase, 1,3-DNP displayed a mutagenic response in TA98NR that was comparable to that obtained in TA98. NAD(P)H-quinone oxidoreductase was found to increase the mutagenicity of 1,6- but not 1,3- or 1,8-DNP to mutagenic intermediates in TA98/1,8-DNP6, a strain deficient in O-acetyltransferase activity. The results suggest that NAD(P)H-quinone oxidoreductase not only catalyzes reduction of the parent DNP but also that of partially reduced metabolites generated from that DNP. Such reductive metabolism may lead to increased formation of the penultimate mutagenic species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call