Abstract

Rain water is an important source to feed the groundwater aquifer, whether directly or by harvesting and recharging. The importance of purification is for reducing the risk of pollutants from recharging runoff rainwater. The use of sand filter as a technique considered not expensive and commonly used for removing contaminants from water and wastewater treatment industries. The methodology used laboratory testing, by designing and constructing pilot plant to experiment the sand filter for purification, and made simulation for the infiltration of storm water through sand filter of 2 meters depth, in order to find the relationship between the depth on one hand, and the removal of suspended solids and fecal coliforms bacteria on the other hand, to know the effective depth that gets the purification. The research results during three days of infiltration show that the sand filter can remove fecal coliforms bacteria at a depth of 150 cm, and provide purified water with a concentration of suspended solids less than 20 mg/liter at a depth of 75 cm.

Highlights

  • The population and urbanization incensement led to increasing the quantity of runoff while decreasing in the natural infiltration, storm water runoff including sediment, nutrients, toxic substances, oxygen-demanding materials and bacteria, all of which were the direct infiltration of urban runoff that led to contamination of groundwater [1,2]

  • The aim of this paper is to investigate and to reach the optimum efficiency of using sand filter for purification of storm water, by testing in laboratory the quality of effluent of filtrated storm water samples at different depths of the sand filter media and by investigating the efficiency of purification

  • 3) Percent removal of fecal coliforms and suspended solid through sand filter increased as the depth of the sand filter increased

Read more

Summary

Introduction

The population and urbanization incensement led to increasing the quantity of runoff while decreasing in the natural infiltration, storm water runoff including sediment, nutrients, toxic substances, oxygen-demanding materials and bacteria, all of which were the direct infiltration of urban runoff that led to contamination of groundwater [1,2]. Torrens et al [5] stated that the sand used as the filter medium must be fine enough to ensure the biological analyses, and coarse enough to avoid surface clogging and maintain correct aeration. Too fine media limits the quantity of water that may be successfully filtered due to early filter clogging [6]. Coarser sands have larger pore spaces that have high flow-through rates but pass larger suspended particles. A very fine sand has small pore spaces with slow flow-through rates and filter out smaller total suspended solids (TSS) particles [7]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call