Abstract

Plasminogen activator inhibitor-1 (PAI-1) acts as the major inhibitor of fibrinolysis by inhibiting tissue-type and urokinase-type plasminogen activators. Although it shares a common tertiary structure with other serine protease inhibitors, PAI-1 is unique in its conformational lability, which allows conversion of the active form to the latent conformation under physiological conditions. Therefore, recombinant PAI-1 expressed in eukaryotic or prokaryotic cells almost always contains its inactive, latent form, with very low specific activity. In this study, we developed a simple and efficient method for purifying the active form of recombinant PAI-1 rather than the latent conformation from PAI-1 overexpressing Escherichia coli cells. The overall level of expression and the amount of PAI-1 found in inclusion bodies were found to increase with culture temperature and with time after induction. Refolding of unfolded PAI-1 from inclusion bodies and ion-exchange column chromatography were sufficient to purify PAI-1. The purified protein yielded a single, 43 kDa protein band upon SDS–polyacrylamide gel electrophoresis, and it efficiently inhibited tissue-type and urokinase-type plasminogen activators similar to PAI-1 from natural sources. Activity measurements showed that PAI-1 purified from inclusion bodies exhibited a specific activity near the theoretical maximum, unlike PAI-1 prepared from cytosolic fractions. Conformational analysis by urea gel electrophoresis also indicated that the PAI-1 protein purified from inclusion bodies was indeed in its active conformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call