Abstract

Septins are guanine nucleotide-binding proteins that are conserved from fungi to humans. Septins assemble into heterooligomeric complexes and higher-order structures with key roles in various cellular functions including cell migration and division. The mechanisms by which septins assemble and interact with other cytoskeletal elements like actin remain elusive. A powerful approach to address this question is by cell-free reconstitution of purified cytoskeletal proteins combined with fluorescence microscopy. Here, we describe procedures for the purification of recombinant Drosophila and human septin hexamers from Escherichia coli and reconstitution of actin-septin coassembly. These procedures can be used to compare assembly of Drosophila and human septins and their coassembly with the actin cytoskeleton by total internal reflection fluorescence microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.