Abstract

Immobilized metal affinity chromatography (IMAC) is based on the affinity of polyhistidine tracts for divalent metal cations (usually Ni2+) immobilized as transition metal chelate complexes on a chromatography resin. The main protocol here is optimized for use of Ni2+-NTA resin to purify soluble 6xHis-tagged proteins by a straightforward batch method during the binding step, followed by gravity flow for washes and elution. This protocol does not require any specialized equipment other than a simple glass or plastic column. IMAC resins can be used in multiple formats, including batch, gravity flow, centrifuge columns, and fast performance liquid chromatography (FPLC) systems. FPLC systems are designed specifically for the chromatographic separations of proteins and other biomolecules. These systems typically contain multiple pumps, an in-line UV absorption monitor, conductivity meter, pH meter, fraction collector, and other options that allow for the simultaneous purification, analysis, and fractionation of the sample. When linked with the appropriate instruments, an FPLC can become a high-precision, automated instrument that separates proteins at a high resolution. An alternative protocol is included here that describes 6xHis-tagged protein purification using FPLC. Procedures for the cleaning and regeneration of the IMAC resin for reuse are also described, and, finally, considerations for storing purified proteins are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call