Abstract

Bio-based organic acids are promising renewable carbon sources for the chemical industry. However energy-consuming purification processes are used, like distillation or crystallization, to reach high purities required in some applications. That is why preparative chromatography was studied as an alternative separation technique. In a previous work dealing with the purification of lactic, succinic and citric acids, the Langmuir model was insufficient to explain the elution profiles obtained with a strong anionic resin.Consequently the Langmuir model was coupled with a usual ion-exchange model to take into account the retention of their conjugate bases (<2%), which are commonly neglected at low pH (<1.5). Elution simulations with both uptake mechanisms fitted very well with experimental pulse tests. Only two parameters were optimized (equilibrium constant of acid uptake and ion-exchange selectivity coefficient of conjugate base) and their value were coherent with experimental and resin suppliers’ data.These results confirmed that the singular tailing and apparent delay observed with succinic and citric acids can be explained by the high affinity of succinate and citrate for resin cationic sites. The model was implemented in a preparative chromatography simulation program in order to optimize operating parameters of our pilot-scale ISMB unit (Improved Simulated Moving Bed). The comparison with experimental ISMB profiles was conclusive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.