Abstract

Multiple mRNA processing steps, including splicing and 3' processing, take place in macromolecular complexes that contain many proteins and sometimes RNA molecules. A key challenge in the mRNA processing field has been to define the structure-function relationship of these sophisticated molecular machines. A prerequisite for addressing this challenge is to develop tools for purifying mRNA processing complexes in their native and intact forms that are suitable for functional and structural studies. Among many methods that have been developed, RNA affinity-based methods are most widely applied. In these methods, RNA molecules that are substrates to mRNA processing machineries are fused with an affinity tag, incubated with cellular extracts/lysates to allow for the assembly of mRNA processing complexes, and finally the assembled complexes are purified using RNA affinity tag. In this chapter, we will overview RNA affinity-based purification methods and describe in detail one such method, MS2-tagging, and its application in the purification of mRNA 3' processing complexes. Although these methods were originally developed for purifying mRNA processing complexes, they should be applicable to purification of other RNA-protein complexes as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.