Abstract

Morphological and biochemical studies of human colony-forming units-erythroid (CFU-E) have been hindered by their extreme rarity. Since burst-forming units-erythroid (BFU-E) develop into CFU-E, we used normal human blood BFU-E to generate large numbers of highly purified CFU-E in vitro. Using density centrifugation, sheep erythrocyte rosetting, surface immunoglobulin-positive cell depletion, adherence to plastic, and negative panning with monoclonal antibodies, human blood BFU-E were purified from 0.017 to 0.368%, a 22-fold purification with a 43% yield. The panned cells were cultured in methylcellulose with recombinant erythropoietin (rEp) and conditioned medium for 9 d. These cells were then collected and CFU-E were further purified using adherence and density centrifugation. This yielded almost 10(7) erythroid colony forming cells with a purity of 70 +/- 18%. Analysis of these cells by light and electron microscopy showed 94% erythroid cells. The prominent cell was a primitive blast with high nuclear/cytoplasmic ratio, dispersed nuclear chromatin and a distinct large nucleolus. The relation between the number of erythroid colonies and the number of day 9 cells plated in plasma clots was a straight line through the origin with a maximum number of erythroid colonies at 1 U/ml of rEp and no erythroid colonies without rEp. Specific binding with 125I-rEp showed that 60% of the binding was inhibited by excess pure erythropoietin (Ep), but not by albumin, fetal calf serum, and a variety of growth factors or glycoproteins. By days 12-13 of cell culture, when the progenitor cells matured to late erythroblasts, specific binding markedly declined. In this study, human CFU-E have been isolated in sufficient purity to characterize the morphology of these rare cells and in sufficient numbers to measure specific binding of Ep.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.