Abstract

Polyvinyldiene fluoride (PVDF)-based affinity membranes with immobilized copper ions were developed in this study. The resulting membranes were tested for their adsorption properties using a model protein, lysozyme, in batch mode. First, different lengths of diamine were utilized as spacer arms to immobilize the metal ions onto the membranes. It was found that the application of 1,8-diaminooctane as the spacer arm led to the highest adsorption capacity. Moreover, the effects of pH and salt concentration were investigated to distinguish the proportion of specific and nonspecific interactions. A big fraction of lysozyme adsorption capacity for the immobilized metal affinity membranes was considered to come from nonspecific electrostatic interactions, which could be reduced by increasing salt concentration. Lastly, the purification of hepatocyte growth factor (HGF) from insect cell supernatant was performed using the immobilized metal affinity membranes in batch mode. HGF was found in the elution condition using EDTA, indicating the successful purification of HGF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call