Abstract

Diabetes is a chronic, metabolic disease characterized by hyperglycemia resulting from either insufficient insulin production or impaired cellular response to insulin. Exopolysaccharides (EPS) produced by Lactobacillus spp. demonstrated promising therapeutic potential in terms of their anti-diabetic properties. Extraction and purification of EPS produced by Lactobacillus acidophilus and Limosilactobacillus reuteri were performed using ethanol precipitation, followed by alcohol/salt based aqueous two-phase system (ATPS). The purification process involved ethanol precipitation followed by an alcohol/salt-based ATPS. The study systematically investigated various purification parameters in ATPS, including ethanol concentration, type and concentration of ionic liquid, type and concentration of salt and pH of salt. Purified EPS contents from L. acidophilus (63.30 μg/mL) and L. reuteri (146.48 μg/mL) were obtained under optimum conditions of ATPS which consisted of 30 % (w/w) ethanol, 25 % (w/w) dipotassium hydrogen phosphate at pH 10 and 2 % (w/w) 1-butyl-3-methylimidazolium octyl sulfate. The extracted EPS content was determined using phenol sulphuric acid method. In α-amylase inhibition tests, the inhibitory rate was found to be 92.52 % (L. reuteri) and 90.64 % (L. acidophilus), while in α-glucosidase inhibition tests, the inhibitory rate was 73.58 % (L. reuteri) and 68.77 % (L. acidophilus), based on the optimized parameters selected in ATPS. These results suggest that the purified EPS derived from the postbiotics of Lactobacillus spp. hold promise as potential antidiabetic agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call