Abstract

Abstract Purification of cytochrome b6 was pursued to further develop rational technology for purification, proof of purity, and study of properties of membrane proteins. Cytochrome b6 was purified—the first time from any source—from spinach chloroplast membranes; yield of pure cytochrome b6 was 30% of that found in ethanol-extracted particles. The three-step procedure (pH 8) employed: (I) extraction in Triton X-100-4 M (optionally 2 M) urea, (II) chromatography in a Bio-Gel A-1.5m Column (Triton X-100-4 M urea). Without this step, subsequent electrophoresis failed. (III) Preparative disc gel electrophoresis. Properties of cytochrome b6: Cytochrome b6 migrated in undenatured form as a single band in disc electrophoresis (pH 8, 7 or 8.9). None of the limited, accepted properties of the cytochrome in particles was altered by the purification procedure: Reduced b6 has absorption maxima (22 °C) at 434, 536, and 563 nm; at −199 °C the a absorption region shows two peaks of equal intensity at 561 and 557 nm. Cytochrome b6 is reduced by dithionite (not by ascorbate) and is autoxidizable. The prosthetic group of b6 is protohaemin and is fully extractable by acid-acetone. No non-haem iron is present. The millimolar extinction coefficient of reduced b6 (563–600nm) per mole of haem is 21. The protein equivalent weight is 40000 g per mole of haem. Cytochrome b4 is an intrinsically aggregatable molecule. The reduced cytochrome does not react with CO except when Triton X-100 is present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call