Abstract
In the present report we have characterized the binding of surfactant protein A (SP-A) to bone marrow-derived macrophages, U937 cells, alveolar macrophages, and type II epithelial cells. The binding of SP-A to all cell types is Ca2+-dependent and trypsin-sensitive, but type II cells express distinct Ca2+-independent binding sites. The binding of SP-A to macrophages is independent of known cell surface carbohydrate-specific receptors and of glycoconjugate binding sites on the surface of the cells and is distinct from binding to C1q receptors. Based on ligand blot analysis, both type II cells and macrophages express a 210-kDa SP-A-binding protein. The 210-kDa protein was purified to apparent homogeneity from U937 macrophage membranes using affinity chromatography with noncovalently immobilized surfactant protein A, and was purified from rat lung by differential detergent and salt extraction of isolated rat lung membranes. Polyclonal antibodies against the rat lung SP-A-binding protein inhibit binding of SP-A to both type II cells and macrophages, indicating that the 210-kDa protein is expressed on the cell surface. The polyclonal antibodies also block the SP-A-mediated inhibition of phospholipid secretion by type II cells, indicating that the 210-kDa protein is a functional cell-surface receptor on type II cells. In a separate report we have determined that antibodies to the SP-A receptor block the SP-A-mediated uptake of Mycobacterium bovis, indicating that the macrophage SP-A receptor is involved in SP-A-mediated clearance of pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.