Abstract

Coenzyme A (CoA) transferase from Peptostreptococcus elsdenii has been purified and crystallized, and some of its properties have been established. The work was facilitated by a newly developed coupled and continuous spectrophotometric assay in which the disappearance of added acrylate could be followed at 245 nm. The rate-limiting conversion of acetyl- and beta-hydroxypropionyl CoA to acrylyl CoA by CoA transferase was followed by the non-rate-limiting conversion to beta-hydroxypropionyl CoA by excess crotonase. Thus, a small priming quantity of acetyl CoA served to generate acrylyl CoA, which, by hydration, generated beta-hydroxypropionyl CoA. This product then served to generate more acrylyl CoA in cyclic fashion. The net result was the CoA transferase-limited conversion of acrylate to beta-hydroxypropionate. The purified transferase has a molecular weight of 125,000 and is composed of two subunits of 63,000 each, as determined by disc gel electrophoresis. Short-chain-length monocarboxylic acids are substrates, whereas dicarboxylic or beta-ketocarboxylic acids are not. The reaction kinetics are typical of a ping-pong bi bi mechanism composed of two half reactions linked by a covalent enzyme intermediate. Incubation of the transferase with acetyl CoA in the absence of a fatty acid acceptor yielded a stable intermediate which, by absorption spectrophotometry, radioactivity measurements, reduction with borohydride, reactivity with hydroxylamine, and catalytic activity, was identified as an enzyme-CoA compound. Kinetic constants for CoA transferase are: final specific activity, 110 U/mg of protein corresponding to 1.38 X 10(4) mumol of acrylate activated per mumol of transferase; Km for acrylate, 1.2 X 10(-3) M; Km for acetyl CoA (beta-hydroxypropionyl CoA), 2.4 X 10(-5) M.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call