Abstract

The ubiX gene (UniProtKB code Q489U8) of Colwellia psychrerythraea strain 34H has been annotated as a putative flavin mononucleotide (FMN)-dependent aromatic acid decarboxylase. Based on previous studies of homologous proteins, CpsUbiX is thought to catalyze the decarboxylation of 3-octaprenyl-4-hydroxybenzoate to produce 2-polyprenylphenol in the ubiquinone-biosynthesis pathway using a noncovalently bound FMN molecule as a cofactor. However, the detailed mechanisms of this important enzyme are not yet clear and need to be further elucidated. In this study, it was found that the V47S single mutation resulted in a loss of FMN binding, resulting in the production of FMN-free CpsUbiX protein. This mutation is likely to destabilize FMN-protein interactions without affecting the overall structural folding. To fully characterize the conformational changes upon FMN binding and the enzymatic mechanism at the molecular level, the wild-type (FMN-bound) and V47S mutant (FMN-free) CpsUbiX proteins were purified and crystallized using the sitting-drop vapour-diffusion method. Furthermore, complete diffraction data sets for FMN-bound (space group C222(1)) and FMN-free (space group P23) forms were obtained to 2.0 and 1.76 Å resolution, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call