Abstract

The emergence and global spread of multidrug-resistant Acinetobacter baumannii strains are major threats to public health. Inhibition of peptidoglycan biosynthesis is an effective strategy for the development of antibiotics. The ATP-dependent UDP-N-acetylmuramoyl-tripeptide-D-alanyl-D-alanine ligase (MurF) that is responsible for the last step of peptidoglycan biosynthesis is a validated target for the development of antibiotics. Crystals of A. baumannii MurF in complex with ATP were grown by the microbatch crystallization method at 295 K. The crystals belonged to space group P322₁, with unit-cell parameters a=b=85.42, c=129.86 Å. Assuming the presence of one molecule in the asymmetric unit, the solvent content was estimated to be about 54.32%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.