Abstract

The conversion of α-phenylalanine to β-phenylalanine is the first committed step in the biosynthesis of the C-13 side chain of Taxol. Thus, the novel enzyme responsible for this step, phenylalanine aminomutase (PAM), is of considerable interest for studies of Taxol biosynthesis and represents a potential target for genetic engineering. A method is described for purifying PAM from Taxus chinensis cell cultures. The purified enzyme has a K m of 1.1 mM, a V max of 110.1 μm/min/mg protein, a pH optimum of 7.5–8.0, and a denatured molecular weight of about 80 kDa. Peptide sequences derived from the purified protein were used to design and synthesize degenerate primers enabling the PCR synthesis of the PAM cDNA. The PAM cDNA encodes a protein of 687 amino acid residues with a deduced molecular weight of 75.3 kDa. The PAM cDNA was cloned and expressed in Escherichia coli, and PAM activity was demonstrated. As a gene symbol for the PAM enzyme, pam is proposed. Protein sequence alignments of PAM, phenylalanine ammonia-lyase (PAL), and histidine ammonia-lyase (HAL) sequences exhibit significant similarity providing insight into potential active site residues of PAM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.