Abstract

The enzyme inositol oxygenase (myo-inositol : oxygen oxidoreductase; E.C. 1.13.99.1) is a monooxygenase that converts inositol into glucuronic acid in the presence of molecular oxygen. This enzyme is integrated into a pathway leading to either degradation and energy production or the biosynthesis of precursors for polysaccharides. The enzyme was purified from the yeast Cryptococcus lactativorus by a five-step chromatography procedure. The purified enzyme shows a molecular mass of 37 kDa on SDS-PAGE, similar to the estimation of the size of the native enzyme determined by size exclusion chromatography. Peptides of the inositol oxygenase protein derived from a tryptic digest were sequenced de novo by nanoelectrospray tandem mass spectrometry. Using degenerate oligonucleotides, the corresponding gene was cloned from first strand cDNA. The open reading frame encodes a 315 amino acid polypeptide with a predicted molecular mass of 36.9 kDa. Inositol oxygenase is a single copy gene in C. lactativorus. It has close homologues in other fungi such as Cryptococcus neoformans and Neurospora crassa. Biochemical characterization of the enzyme showed a pH optimum of 6-6.5 and a temperature optimum of 30 degrees C. Myo-inositol is the only accepted substrate with a Km of ca. 5 mM. The enzyme contains a Fe-centre but the enzyme activity is resistant to KCN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call