Abstract

Iron oxidase was proposed to be the initial electron acceptor from the ferrous ion in the iron oxidation of the Acidithiobacillus genus for metal bioextraction; however, its most fundamental property of direct ferrous oxidation kinetics remains undetermined due to the confusion of reaction monitor method. Here, a recombinant iron oxidase from Acidithiobacillus ferridurans Riv11 was constructed, expressed, purified, characterized, and further used to investigate the kinetics and mechanism of ferrous oxidation. This protein is more stable in an acid solution than in a neutral solution. An infrared characteristic peak around 1050 cm−1 of the [Fe4S4] cluster was identified. The [Fe4S4] cluster does not affect the secondary structure of protein, but plays an important role in the stability of protein and strongly absorbs the intrinsic fluorescence of protein, resulting in a great loss of the fluorescence emission. The protein has far more absorbance than those of the iron ions in solution in the visible region; therefore, the maximum difference absorbance around 500 nm between the oxidized and reduced states of protein can be used to monitor the reaction of ferrous oxidation. Accordingly, the kinetic rate constant of the reaction was determined. Bioinformatics analysis and molecular simulation further revealed the underlying molecular mechanism that ferrous ions approach the protein at the edge of a large hydrophobic surface patch nearest to the [Fe4S4] cluster from a direction far from all positively charged residues, which enough enables an efficient electron transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call