Abstract
Fermented bean foods are a crucial source of fibrinolytic enzymes. The presented study aimed to purify, characterize, and chemically modify Bacillus velezensis SN-14 fibrinolytic enzyme. The fibrinolytic enzyme was purified using CTAB/isooctane/hexyl alcohol/n-butyl alcohol reverse micellar system, and the purified enzyme was chemically modified to improve its enzymatic activity and stability. Enzyme activity recovery and the purification fold for this enzyme were 44.5 ± 1.9% and 4.93 ± 0.05 fold, respectively. SDS-PAGE results showed that the molecular weight of the purified fibrinolytic enzyme was around 28 kDa. Besides, the optimum temperature and pH of the purified fibrinolytic enzyme were 37 °C and 8–9, respectively. Fe2+, mPEG5000, and pepsin were used for chemical modification and for improving the activity and stability of the purified enzyme. Thermal and acid-base stability of chemically modified enzymes increased significantly, whereas enzymatic activity increased by 7.3 times. After 30 d of frozen storage, the modified enzyme's activity was remarkably lower (33.2%) than the unmodified enzyme (60.6%). The current study on B. velezensis SN-14 fibrinolytic enzyme and chemical modification method using Fe2+, mPEG5000, and pepsin provide a reference for developing fibrinolytic drugs and foods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.