Abstract

The AMoRE collaboration searches for the neutrinoless double-beta decay of 100Mo with ultra-radiopure molybdate crystals operated as low-temperature scintillating bolometers. For such a rare event search experiment, the techniques for investigating and reducing radioactive background contaminants in detector materials are extremely crucial. This paper discusses techniques for deep purification of enriched molybdenum for growing the crystals and the recovery of 100MoO3 from the residual melt left after growing lithium molybdate crystals. The purities of enriched molybdenum trioxide powders before and after the purification and that of the recovered powder were tested with ICP-MS; results of these tests are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.