Abstract

The two major ribonucleases (EC 3.1.27.5) present in normal human urine have been highly purified and extensively characterized for their enzymatic, physical, chemical and structural properties. One of the enzymes, RNAase C, is a glycoprotein which exhibits a pH optimum of 8.5 with RNA as the substrate and preferentially degrades the synthetic homoribopolymer poly(C). This enzyme is resolved into multiple components by column electrofocusing. However, prior treatment with neuraminidase results in a single form of RNAase C with an isoelectric point of 10.4, indicating that the charge heterogeneity is the result of variability in sialic acid content. Amino acid composition and NH 2- and COOH-terminal sequence analyses of RNAase C show that this enzyme is very similar to mammalian pancreatic RNAases; the data indicate a peptide chain of 126 amino acid residues and a 33% carbohydrate content. The second enzyme isolated from urine, termed RNAase U, is also a glycoprotein which has a pH optimum of 7.0 with RNA as substrate and is virtually inactive against poly(C). RNAase U lacks sialic acid and focuses as a single component with a highly basic isoelectric point of greater than pH 11.0. The NH 2- and COOH-terminal sequences of RNAase U show little homology with the pancreatic RNAases. However, the amino acid composition of this enzyme indicates it is very similar to human spleen RNAase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call