Abstract

The myelin/oligodendrocyte glycoprotein (MOG) is found exclusively in the CNS, where it is localized on the surface of myelin and oligodendrocyte cytoplasmic membranes. The monoclonal antibody 8-18C5 identifies MOG. Several studies have shown that anti-MOG antibodies can induce demyelination, thus inferring an important role in myelin stability. In this study, we demonstrate that MOG consists of two polypeptides, with molecular masses of 26 and 28 kDa. This doublet becomes a single 25-kDa band after deglycosylation with trifluoromethanesulfonic acid or peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase, indicating that there are no or few O-linked sugars and that the doublet band represents differential glycosylation. Partial trypsin cleavage, which also gave a doublet band of lower molecular weight, confirmed this idea. MOG was purified by polyacrylamide gel electrophoresis, followed by electroelution. Three N-terminal sequences of eight to 26 amino acids were obtained. By western blot analysis, no binding was found between MOG and cerebellar soluble lectin. MOG does not seem to belong to the signal-transducing GTP-binding proteins. Reduced MOG concentrations were observed in jimpy and quaking dysmyelinating mutant mice, giving further support to its localization in compact myelin of the CNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call