Abstract

Recent work in our laboratory on the purification and characterization of the (sodium + potassium)-activated adenosinetriphosphatase (NaK ATPase) has been reviewed. Two enzymes have been purified, that from the rectal salt gland of the spiny dogfish, Squalus acanthias and that from the electric organ of the electric eel, Electrophorus electricus. The enzyme appears to consist of two catalytic subunits of molecular weight of about 95,000 and one glycoprotein with a molecular weight of about 50,000. The amino acid composition, N-terminal amino acids, and the carbohydrate composition of these subunits have been determined. The phospholipid composition of the holoenzyme has also been determined. The protein component shows very little variation with evolution, but the carbohydrate and phospholipid components show considerable variation. It has been possible to form vesicles from the purified enzyme from Squalus acanthias and to demonstrate the ATP-dependent, ouabain inhibitable, coupled uphill transports of Na+ and K+. The properties of these transports are very similar to those observed previously in intact erythrocytes or resealed erythrocyte ghosts with respect to asymmetries of binding sites, stoichiometries of Na+ and K+ transported, Na+-Na+ exchange, and K+-K+ exchange. It is concluded that the NaK ATPase is the molecular machine for effecting Na+ and K+ transport in the intact cell membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.