Abstract

Indolamine N-methyltransferase (INMT) has been purified to an apparent homogeneity from rabbit lung, and some of its catalytic and physicochemical properties have been examined. The enzyme is a monomeric protein with a molecular weight of 31,500 +/- 1000, a molecular Stokes radius of 21.5 A, and a diffusion coefficient of 8.7 X 10(-7) cm2/s. The frictional ratio of the native enzyme (1.05) suggests that the shape of the molecule is nearly spherical. Denaturation experiments performed with increasing concentrations of guanidine hydrochloride (Gdn-HCl) at neural pH indicated that the active site of the enzyme was destroyed by a structural rearrangement of the protein molecule without large change in its size and shape. The final state reached in 6.0 M Gdn . HCl seemed to correspond to a disulfide cross-linked randomly coiled polypeptide. Full normalization of the fluorescent parameter was attained only in the presence of 0.1 M beta-mercaptoethanol. A structural rearrangement has been observed upon acidification of INMT from pH 7.0 to pH 2.0. At pH 4.5, most of the peptide backbone appeared to be unorganized, but further acidification to pH 2.0 produced a reorganization of protein structure which became able to bind 8-anilino-1-naphthalenesulfonate. The data support the hypothesis that the enzyme structure results from the close package of organized regions joined by structureless segments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.