Abstract

Cyanobacterial hepatotoxins, including microcystins (MCs) and nodularins (NODs), are widely produced, distributed and extremely hazardous to human beings and the environment. However, the catalytic mechanism of microcystinase for biodegrading cyanobacterial hepatotoxins is not completely understood yet. The first microcystinase (MlrA) catalyzes the ring opening of cyclic hepatotoxins, while being further hydrolyzed by the third microcystinase (MlrC). Based on the homology modeling, we postulated that MlrC of Sphingopyxis sp. USTB-05 was a Zn2+-dependent metalloprotease including five active sites: Glu56, His150, Asp184, His186 and His208. Here, the active recombinant MlrC and five site-directed mutants were successfully obtained with heterologous expression and then purified for investigating the activity. The results indicated that the purified recombinant MlrC had high activity to catalyze linearized hepatotoxins. Combined with the biodegradation of linearized NOD by MlrC and its mutants, a complete enzymatic mechanism for linearized hepatotoxin biodegradation by MlrC was revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.