Abstract

Indoleamine 2,3-dioxygenase (IDO1) catalyzes the first step in tryptophan breakdown along the kynurenine pathway. Therapeutic inhibition of IDO1 is receiving much attention due to its proposed role in the pathogenesis of several diseases including cancer, hypotension and neurodegenerative disorders. A related enzyme, IDO2 has recently been described. We report the first purification and kinetic characterization of human IDO2 using a facile l-tryptophan consumption assay amenable to high throughput screening. We found that the Km of human IDO2 for l-tryptophan is much higher than that of IDO1. We also describe the identification and characterization of a new IDO1 inhibitor compound, Amg-1, by high throughput screening, and compare the inhibition profiles of IDO1 and IDO2 with Amg-1 and previously described compounds. Our data indicate that human IDO1 and IDO2 have different kinetic parameters and different inhibition profiles. Docking of Amg-1 and related analogs to the known structure of IDO1 and to homology-modeled IDO2 suggests possible rationales for the different inhibition profiles of IDO1 and IDO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.