Abstract

A 20-kD protein has been purified from cotyledons of recalcitrant (desiccation-sensitive) chestnut (Castanea sativa) seeds, where it accumulates at levels comparable to those of major seed storage proteins. This protein, termed Cs smHSP 1, forms homododecameric complexes under nondenaturing conditions and appears to be homologous to cytosolic class I small heat-shock proteins (smHSPs) from plant sources. In vitro evidence has been obtained that the isolated protein can function as a molecular chaperone; it increases, at stoichiometric levels, the renaturation yields of chemically denatured citrate synthase and also prevents the irreversible thermal inactivation of this enzyme. Although a role in desiccation tolerance has been hypothesized for seed smHSPs, this does not seem to be the case for Cs smHSP 1. We have investigated the presence of immunologically related proteins in orthodox and recalcitrant seeds of 13 woody species. Our results indicate that the presence of Cs smHSP 1-like proteins, even at high levels, is not enough to confer desiccation tolerance, and that the amount of these proteins does not furnish a reliable criterion to identify desiccation-sensitive seeds. Additional proteins or mechanisms appear necessary to keep the viability of orthodox seeds upon shedding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.