Abstract

The development of food-derived Xanthine Oxidase (XO) inhibitors is critical to the treatment of hyperuricemia and oxidative stress-related disease. Few studies report on milk protein hydrolysates’ XO inhibitory activity, with the mechanism of their interaction remaining elusive. Here, different commercial enzymes were used to hydrolyze α-lactalbumin and bovine colostrum casein. The two proteins hydrolyzed by alkaline protease exhibited the most potent XO inhibitory activity (bovine casein: IC50 = 0.13 mg mL−1; α-lactalbumin: IC50 = 0.28 mg mL−1). Eight potential XO inhibitory peptides including VYPFPGPI, GPVRGPFPIIV, VYPFPGPIPN, VYPFPGPIHN, QLKRFSFRSFIWR, LVYPFPGPIHN, AVFPSIVGR, and GFININSLR (IC50 of 4.67–8.02 mM) were purified and identified from alkaline protease hydrolysates by using gel filtration, LC-MS/MS and PeptideRanker. The most important role of inhibiting activity of peptides is linked to hydrophobic interactions and hydrogen bonding based on the results of molecular docking and molecular dynamics simulation. The enzymatic hydrolysate of α-lactalbumin and bovine colostrum casein could be a competitive candidates for hyperuricemia-resisting functional food.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call