Abstract
Protein arginine methyltransferase (PRMT) enzymes catalyze posttranslational modifications of target proteins and are often upregulated in human cancers. In this study, we purified two chemical compounds from seeds of Foeniculum vulgare based on their ability to inhibit the enzymatic activity of PRMT5. These two compounds were identified as Pheophorbide a (PPBa) and Pheophorbide b (PPBb), two breakdown products of chlorophyll. PPBa and PPBb inhibited the enzymatic activity of both Type I and Type II PRMTs with IC50 values at sub micromole concentrations, inhibited the arginine methylation of histones in cells, and suppressed proliferation of prostate cancer cells. Molecular docking results predicted that PPBa binds to an allosteric site in the PRMT5 structure with a high affinity (ΔG = -9.0 kcal/mol) via hydrogen bond, ionic, and π-π stacking interactions with amino acid residues in PRMT5. Another group of natural compounds referred to as protoporphyrins and sharing structural similarity with pheophorbide also inhibited the PRMT enzymatic activity. This study is the first report on the PRMT-inhibitory activity of the tetrapyrrole macrocycles and provides useful information regarding the application of these compounds as natural therapeutic reagents for cancer prevention and treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.