Abstract

Engine oil used in automobiles is a threat to soil and water due to the recalcitrant properties of its hydrocarbons. It pollutes surrounding environment which affects both flora and fauna. Microbes can degrade hydrocarbons containing engine oil and utilize it as a substrate for their growth. Our results demonstrated that cell-free broth of Bacillus velezensis KLP2016 (Gram + ve, endospore forming; Accession number KY214239) recorded an emulsification index (E24%) from 52.3% to 65.7% against different organic solvents, such as benzene, pentane, cyclohexane, xylene, n-hexane, toluene and engine oil. The surface tension of the cell-free broth of B. velezensis grown in Luria–Bertani broth at 35 °C decreased from 55 to 40 mN m−1at critical micelle concentration 17.2 µg/mL. The active biosurfactant molecule of cell-free broth of Bacillus velezensis KLP2016 was purified by Dietheylaminoethyl-cellulose and size exclusion chromatography, followed by HPLC (RT = 1.130), UV–vis spectrophotometry (210 nm) and thin layer chromatography (Rf = 0.90). The molecular weight of purified biosurfactant was found to be ~ 1.0 kDa, based on Electron Spray Ionization-MS. A concentration of 1980 × 10–2 parts per million of CO2 was trapped in a KOH solution after 15 days of incubation in Luria–Bertani broth containing 1% engine oil. Our results suggest that bacterium Bacillus velezensis KLP2016 may promise a new dimension to solving the engine oil pollution problem in near future.

Highlights

  • Environmental pollution is currently one of the most serious global issues

  • Emulsification index, surface tension and critical micelle concentration of biosurfactant containing cell‐free broth of B. velezensis An emulsification index of ≥ 30% was considered as significant emulsification activity

  • The reported results showed that B. velezensis cell-free broth showed ­E24% marked 65.7%, 59.0%, 56.1%, 61.0%, 52.3%, 65.2% and 56.2% with benzene, pentane, cyclohexane, xylene, n-hexane, toluene and engine oil, respectively

Read more

Summary

Introduction

Environmental pollution is currently one of the most serious global issues. Engine oil used in automobiles is hazardous and toxic to the soil. Used engine oil that is spilled or wrongly discarded may enter storm water runoff and eventually enter into water bodies affecting adversely the environmental health of receiving water bodies [1]. Oil. Various treatment procedure involving both chemical and physical methods, like dissolving, precipitation or absorption, using a range and combination of processes to remove non-hydrocarbons, impurities and other constituents that may severely affect the performance properties of finished products or reduce the efficiency of the conversion processes. Methods comprise separation or removal of aromatics and naphthenes, including impurities and undesirable contaminants. Before processing Sweetening compounds and acids are used to desulphurize crude oil.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call