Abstract

Pseudouridylation is the most abundant and widespread RNA modification, and it plays an important role in modulating the structure and function of RNA. In eukaryotes and archaea, RNA pseudouridylation is catalyzed largely by box H/ACA ribonucleoproteins (RNPs), a distinct group of RNA-protein complexes each consisting of a unique RNA and four common proteins. The RNA component of the complex serves as a guide that base-pairs with its substrate RNA and specifies the target uridine to be modified. In order to systematically study the function and mechanism of pseudouridylation, it is desirable to have a reconstitution system in which biochemically purified/reconstituted box H/ACA RNPs are capable of introducing pseudouridines into an RNA at any target site. Here, we describe a method for the reconstitution of functional box H/ACA RNPs using designer box H/ACA guide RNAs, which in principle can be adopted to reconstitute other RNA-protein complexes as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.