Abstract

ObjectiveTo obtain a pure population of smooth muscle cells (SMC) derived from mouse embryonic stem cells (ESC) and further assess their functions.MethodsA vector, expressing both puromycin resistance gene (puror) and enhanced green fluorescent protein (EGFP) gene driven by smooth muscle 22α (SM22α) promoter, named pSM22α-puror-IRES2-EGFP was constructed and used to transfect ESC. Transgenic ESC (Tg-ESC) clones were selected by G418 and identified by PCR amplification of puror gene. The characteristics of Tg-ESC were detected by alkaline phosphatase (ALP) staining, SSEA-1 immunofluorescence and teratoma formation test in vivo. After induction of SMC differentiation by all-trans retinoic acid, differentiated Tg-ESC were treated with 10 µg/mL puromycin for three days to obtain purified SMC (P-SMC). Percentage of EGFP+ cells in P-SMC was assessed by flow cytometer. Expressions of smooth muscle specific markers were detected by immunostaining and Western blotting. Proliferation, migration and contractility of P-SMC were analyzed by growth curve, trans-well migration assay, and carbachol treatment, respectively. Finally, both P-SMC and unpurified SMC (unP-SMC) were injected into syngeneic mouse to see teratoma development.ResultsTg-ESC clone was successfully established and confirmed by PCR detection of puror gene in its genomic DNA. The Tg-ESC was positive for ALP staining, SSEA-1 staining and formed teratoma containing tissues derived from three germ layers. After retinoic acid induction, large amount of EGFP positive cells outgrew from differentiated Tg-ESC. Three days of puromycin treatment produced a population of P-SMC with an EGFP+ percentage as high as 98.2% in contrast to 29.47% of unP-SMC. Compared with primary mouse vascular smooth muscle cells (VSMC), P-SMC displayed positive, but lowered expression of SMC-specific markers including SM α-actin and myosin heavy chain (SM-MHC) detected either, by immunostaining, or immunoblotting, accelerated proliferation, improved migration (99.33 ± 2.04 vs. 44.00 ± 2.08 migrated cells/field, P < 0.05), and decreased contractility in response to carbachol (7.75 ± 1.19 % vs. 16.50 ± 3.76 % in cell area reduction, P < 0.05). In vivo injection of unP-SMC developed apparent teratoma while P-SMC did not.ConclusionsWe obtained a pure population of ESC derived SMC with less mature (differentiated) phenotypes, which will be of great use in research of vascular diseases and in bio-engineered vascular grafts for regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.