Abstract

Resistance to the glycopeptide antibiotic vancomycin requires five genes. Two of these, vanR and vanS, have sequence homology to cytoplasmic response regulatory (VanR) and transmembrane sensory (VanS) proteins of two-component regulatory systems used to sense and transduce environmental signals. We report the overproduction and purification to homogeneity of VanR (27 kDa) and of a fusion protein of VanS (residues 95-374, the cytosolic domain) to the maltose binding protein (MBP), yielding a MBP-VanS protein of 76 kDa. The MBP-VanS fusion protein displayed an ATP-dependent autophosphorylation on a histidine residue with a rate of 0.17 min-1 and a phosphorylation stoichiometry of 10-15%. 32P-PhosphoMBP-VanS transferred the phosphoryl group to VanR. 32P-Phospho VanR showed chemical stability anticipated for an aspartyl phosphate and was relatively stable to hydrolysis (t1/2 = 10-12 h). Thus, the vancomycin resistance operon appears to have collected and specifically tailored the His kinase and Asp phosphoryl receptor of two-component signal transduction logic for sensing extracellular vancomycin and turning on structural genes, vanA and vanH, to make altered peptidoglycan structures such that vancomycin does not bind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.