Abstract
Short chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric flavoenzyme that catalyzes the first intramitochondrial step in the beta-oxidation of fatty acids. Two polymorphisms in the coding region of the SCAD gene, 511C>T (R147W) and 625G>A (G185S), have been shown to be associated with an increased level of ethylmalonic acid excretion in urine, a clinical characteristic of SCAD deficiency. To characterize the biochemical consequences of these variations, in vitro site-directed mutagenesis and prokaryotic expression were used to produce the corresponding SCAD variant proteins. Both variant proteins were unstable when produced in Escherichia coli, but could be rescued and subsequently purified by coexpressing them with the bacterial chaperonin GroEL/ES. The k(cat)/K(m) values of the green wild-type, R147W, and G185S SCAD enzymes coexpressed with GroEL/ES were 33, 30, and 10 microM(-)(1) s(-)(1), respectively. There were minimal differences in the kinetic parameters measured for the green, degreened, and wild-type enzymes coexpressed with GroEL/ES, and the R147W variant when butyryl-CoA was used as a substrate. The catalytic efficiency of the G185S variant enzyme, however, was reduced compared to that of the wild-type enzyme. The thermal and guanidine HCl stability of the purified enzymes as determined by fluorescence, far-UV CD spectroscopy, and incubation-induced rest activity showed the following order of relative stability: wild-type enzyme > R147W > G185S. Near-UV CD spectroscopy indicated that these impairments are caused by decreased flexibility in the tertiary conformation of the two mutant enzymes. The common SCAD polymorphisms may lead to clinically relevant alterations in enzyme function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.