Abstract
The first step in the biosynthesis of taxol in Pacific yew (Taxus brevifolia) is the cyclization of the universal diterpene precursor geranylgeranyl pyrophosphate to taxa-4(5),11(12)-diene. This parent olefin of the taxane diterpenoids is then elaborated to taxol and related compounds by a complex series of reactions involving oxidations and side-chain acylations. Cyclization activity is located principally in yew stem bark and adhering cambium. The operationally soluble cyclization enzyme was partially purified (∼600-fold) by combination of anion exchange, hydrophobic interaction, and dye-ligand chromatography. Nondenaturing, followed by denaturing, polyacrylamide gel electrophoresis, in combination with gel permeation chromatography, allowed the identification of taxadiene synthase as a monomeric protein of molecular weight 79,000. In general properties (divalent metal ion requirement, kinetic constants, molecular weight), the taxadiene synthase of Pacific yew is similar to the diterpene cyclase abietadiene synthase involved in resin acid biosynthesis in other gymnosperms. However, in pH optimum and response to inhibitors, these two diterpene cyclases are distinctly different. The activity (and enzyme protein) levels of Pacific yew taxadiene synthase are much lower than those for abietadiene synthase of lodgepole pine stem (constitutive) or of grand fir stem (wound-inducible) and the enzyme is not inducible to higher levels by stem wounding or elicitor treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.