Abstract

Infection caused by the fungus Cryptococcus neoformans is potentially fatal. A highly active extracellular phospholipase, demonstrating phospholipase B (PLB), lysophospholipase (LPL) and lysophospholipase/transacylase (LPTA) activities, was purified to homogeneity from C. neoformans using (NH4)2SO4 fractionation, and hydrophobic-interaction, anion-exchange and gel-filtration chromatography. All three enzyme activities co-purified as a single protein with an apparent molecular mass of 70-90 kDa by SDS/PAGE and 160-180 kDa by gel filtration. The ratio of the three activities remained constant after each purification step. The amino acid composition, as well as the sequences of the N-terminus and of five internal peptide fragments were novel. The protein was an acidic glycoprotein containing N-linked carbohydrate moieties, with pI values of 5.5 and 3.5. The apparent Vmax values for PLB and LPL activities were 12.3 and 870 μmol/min per mg of protein respectively; the corresponding Km values were approx. 185.3 and 92.2 μM. The enzyme was active only at acidic pH (pH optimum of 4.0 for PLB and 4.0-5.0 for LPL and LPTA). Enzyme activity did not require added cations, but was inhibited by Fe3+. LPL and LPTA activities were decreased by 0.1% (v/v) Triton X-100 to 50% of the control value. Palmitoylcarnitine (0.5 mM) inhibited PLB (97% inhibition) and LPL and LPTA activities (35% inhibition) competitively. All phospholipids except phosphatidic acid were degraded by PLB, but dipalmitoyl phosphatidylcholine and dioleoyl phosphatidylcholine were the preferred substrates. This is the first complete description of the purification and properties of a phospholipase, which may be involved in virulence, from a pathogenic fungus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.