Abstract
Sucrose equilibrium density ultracentrifugation remains the most widely used technique for retrovirus purification. However, purified virus preparations obtained by this routine method usually contain considerable amounts of contaminating cell membrane vesicles. In addition, sucrose solutions are highly viscous and hyperosmotic which jeopardizes the integrity and functionality of the retrovirus particle. In order to overcome these limitations, an alternative purification technique using rate zonal ultracentrifugation and iodixanol as gradient medium was developed. Recombinant retrovirus particles were produced by 293-GPG packaging cells grown in suspension in the presence of 10% FBS. Concentrated supernatants were purified by rate zonal sedimentation on a 10–30% continuous iodixanol gradient. Virus particles were recovered intact and active from the central fractions of the gradient. By using this strategy, high levels of purification were achieved, with no evident contamination with cell membrane vesicles as indicated by subtilisin treatment studies. The level of purity of the retrovirus preparation is over 95% as shown by SDS-PAGE analysis and size-exclusion chromatography. Purified particles appear homogenous in size and morphology according to negative stain electron microscopy. In addition, large amounts of defective retrovirus particles produced by 293-GPG packaging cells can be separated from functional retrovirus particles using this purification strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Virological Methods
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.