Abstract
1. Rat liver cytosol produced exclusively 6β-naloxol from naloxone in the presence of either NADPH or NADH at pH 7.4. The amount of 6β-naloxol formed with NADPH was about four times that with NADH. The enzyme responsible for this reaction, termed naloxone reductase, was purified to a homogeneous protein by various chromatographic techniques. 2. The purified enzyme is a monomeric protein with a molecular weight of 34000 and an isoelectric point of 5.9, and it has a dual co-factor specificity for NADPH and NADH. The enzyme catalysed the reduction of various carbonyl compounds as well as naloxone analogues, and the dehydrogenation of 3α-hydroxysteroids and alicyclic alcohols. Indomethacin, quercetin and sulphhydryl reagents potently inhibited the enzyme, but pyrazole and barbital had no effect on the enzyme activity. 3. Identity of naloxone reductase and 3alpha-hydroxysteroid dehydrogenase in rat liver was demonstrated by comparing the elution profiles of the two enzyme activities during purification, the ratios of the two enzyme activities at each purification steps, and thermal stability and susceptibility to inhibitors for the two enzyme activities. 4. Amino acid sequences of five peptides obtained by proteolytic digestion of the purified enzyme were completely identical to the corresponding regions of previously reported 3alpha-hydroxysteroid dehydrogenase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.