Abstract

We reported purification of a high molecular weight (HMW) (ca. 180 kD) and a low molecular weight (LMW) (ca. 60 kD) protein fractions from digitonized rat liver microsomes using ammonium sulfate precipitation followed by ion exchange and gel filtration column chromatography. Both fractions expressed fatty acid ethyl ester (FAEE) synthase as well as p-nitrophenyl acetate (PNPA)-hydrolyzing (esterase) activities. The HMW fraction was found to be a trimer with subunit molecular weight ca. 60 kD and structurally and functionally similar to rat hepatic microsomal carboxylesterase (CE, pI 6.1) and adipose tissue FAEE synthase. In this article, we report further purification and characterization of the LMW (minor) fraction expressing FAEE synthase activity and its structural and functional relationship to hepatic microsomal CEs. Using isoelectric focusing (IEF) followed by gel filtration-high-performance liquid chromatography (GF-HPLC), five proteins were purified, which expressed FAEE synthase as well as PNPA-hydrolyzing activity. The isoelectric point values of 6.5, 5.8, 5.6, 5.3, and 5.0 were found for the purified LMW proteins by IEF and each showed a peak corresponding to ca. 60 kD molecular weight by GF-HPLC, which expressed FAEE synthase as well as PNPA-hydrolyzing activity. Sodium dodecyl sulfate-polyacrylamide gel elecrophoresis (SDS-PAGE) analysis of the GF-HPLC purified LMW proteins revealed that these proteins are monomers (ca. 60 kD). All the purified LMW proteins cross-reacted with antibodies to rat adipose tissue FAEE synthase. Coelution of PNPA-hydrolyzing and FAEE synthase activity at each step of purification and cross-reactivity with rat adipose tissue FAEE synthase antibodies suggest that the purified proteins are related to various hepatic microsomal CEs. This conclusion is further supported by the homology of N-terminal amino acid sequence of the purified LMW proteins to various hepatic microsomal CEs and protease precursors. Therefore, LMW FAEE synthase activity most probably is expressed by various isozymes of hepatic microsomal CEs, which are also involved in the biotransformation of xenobiotic alcohols and amines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call