Abstract

Phycoferritin from the nutritionally important blue-green alga Arthrospira platensis has been isolated, by application of conventional biochemical techniques. The molecular mass, yield, iron and total neutral carbohydrate contents of the purified protein were 470 kDa, 0.044 mg g−1 of Arthrospira, 1.4 and 20%, respectively. The iron content was much lower when compared to bacterial and mammalian ferritins. The P: Fe ratio of Arthrospira phycoferritin was 1: 3.5, a value akin to bacterioferritins. Native gel-electrophoresis revealed the presence of isoforms. Subunit analysis by SDS-PAGE and Western blotting showed a protein subunit with an apparent molecular mass of 18 kDa. Oligomeric forms of the protein subunit were also present. The phycoferritin exhibited cross-reactivity with anti-pea seed ferritin suggesting phylogenetic relationship with that of higher plants. Carbohydrate analysis of phycoferritin by GC-MS revealed the presence of sugars such as galactose, glucose and mannose similar to that of mammalian ferritins. Interestingly, the analysis also revealed sugars such as rhamnose, xylose and talose, which has not been reported in the structure of ferritins. Except for very low histidine content in phycoferritin, the rest of the amino acid composition resembled to ferritins of other species. UV-visible spectral analysis of the phycoferritin revealed the presence of haem groups, a property characteristic of bacterioferritins. The fluorescence intensity of phycoferritin was higher than equine spleen ferritin. Circular dichroic spectra revealed a lower degree of helicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.