Abstract
Tilapia skin gelatin hydrolysates (TSGHs) were prepared by simulated gastrointestinal digestion and separated by gel filtration and semi-preparative reversed-phase high-performance liquid chromatography. The anti-photoaging effects were evaluated using an ultraviolet radiation B (UVB)-induced mouse embryonic fibroblast (MEF) photoaging model in vitro. Three fractions from TSGHs with high inhibitory intercellular matrix metalloproteinase-1 (MMP-1) activities and reactive oxygen species (ROS) production were obtained. Three key peptides, GYTGL, LGATGL, and VLGL, were identified, and their C terminate was Gly-Leu. Three peptides were synthesized and exhibited a significant inhibition of intercellular MMP-1 activity and ROS production. Furthermore, three peptides inhibiting MMP-1 activities were evaluated through their docking of S1' and S3' active pockets of MMP-1. Hydrogen bonds and C terminate Gly-Leu played important roles. Finally, the protective effects of three peptides on intercellular collagen in UVB-induced MEFs were compared. Our results indicated that tilapia gelatin peptides exhibited potential activities to prevent and regulate photoaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.