Abstract

An unusual heparin (approximately 1.9 mg/g of dry tissue) was isolated from the marine italian bivalve mollusk Callista chione. Agarose gel electrophoresis showed a high content of the fast-moving heparin component (85 +/- 7.6%) and 15 +/- 1.3% of the slow-moving species. An average molecular mass of 10 950 was calculated by PAGE analysis. The anticoagulant properties were measured as APTT (97 +/- 12.1 IU/mg) and anti-Xa activity (52 +/- 7.4 IU/mg). Structural analysis of clam heparin, performed by depolymerizing heparin samples with heparinase (EC 4.2.2.7) and then separating the resulting unsaturated oligosaccharides by SAX-HPLC, revealed the presence of low amounts of the trisulfated disaccharide [DeltaUA2S(1-->4)-alpha-d-GlcN2S6S] and a significant increase of the disaccharides bearing nonsulfated iduronic and glucuronic acids, [-->4)-alpha-l-IdoA(1-->4)-alpha-d-GlcNAc6S(1-->] and [-->4)-alpha-l-IdoA(1-->4)-alpha-d-GlcN2S6S(1-->], and [-->4)-beta-d-GlcA(1-->4)-alpha-d-GlcN2S6S(1-->]. As a consequence, Callista chione heparin is a low-sulfated polysaccharide showing a specific decrease of the sulfatation in position 2 of the uronic acid units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.