Abstract

Glucosidase I, the first enzyme involved in the post-translational processing of N-linked glycoproteins, was purified to homogeneity from the lactating bovine mammary tissue. The enzyme was extracted by differential treatment of the microsomal fraction with Triton X-100 and Lubrol PX. The solubilized enzyme was subjected to affinity chromatography on Affi-Gel 102 with N-5-carboxypentyldeoxynojirimycin as ligand and DEAE-Sepharose CL-6B chromatography. Purified glucosidase I shows a molecular mass of 320-330 kDa by gel filtration on Sephacryl S-300. SDS/polyacrylamide-gel electrophoresis under reducing conditions indicates a single band of approx. 85 kDa, indicating that the native enzyme is probably a tetrameric protein. Several criteria, including pH optimum of 6.6-7.0, specific hydrolytic action towards Glc3Man9GlcNAc2, to release the terminally alpha-1,2-linked glucosyl residue, and total lack of activity towards Glc1Man9GlcNAc2 and Glc2Man9GlcNAc2 saccharides, which are the biological substrates for processing glucosidase II, and 4-methylumbelliferyl alpha-D-glucopyranoside show the non-lysosomal origin and the processing-specific role of the purified enzyme. The enzyme does not require any metal ions for its activity. Hg2+, Ag+ and Cu2+ are potent inhibitors of the enzyme; this inhibition can be reversed by adding an excess of dithiothreitol. Among the saccharides tested, kojibiose (Glc alpha 1----2Glc) was inhibitory to the enzyme. Polyclonal antibodies raised against the enzyme in rabbit were found to be specific for glucosidase I, as revealed by Western-blot analysis and by immunoadsorption with Protein A-Sepharose. Anti-(glucosidase I) antibodies were cross-reactive towards a similar antigen in solubilized microsomal preparations from liver, mammary gland and heart from the bovine, guinea pig, rat and mouse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.