Abstract

Cysteine aminotransferase (L-cysteine: 2-oxoglutarate aminotransferase, EC 2.6.1.3) was purified over 400-fold from the high-speed supernatant fraction of rat liver. The purified enzyme was homogeneous as judged by gel filtration, isoelectric focusing and disc electrophoresis. The molecular weight of the enzyme was about 74,000 by gel filtration and the isoelectric point was 6.2 (4 degrees C). The enzyme catalyzed transamination between L-cysteine and 2-oxoglutarate and the reverse reaction. The optimum pH was 9.7. The Km value for L-cysteine was 22.2 mM, and that for 2-oxoglutaric acid was 0.06 mM. L-Aspartate was a potent inhibitor of the cysteine aminotransferase reaction. The enzyme was very active toward L-alanine 3-sulfinic acid at pH 8.0, and was also very active toward L-aspartic acid (Km = 1.6 mM). Ratios of activities for L-aspartic acid and L-cysteine were essentially constant during the purification of the enzyme. Evidence based on substrate specificity, enzyme inhibition, and physicochemical properties indicates that cytosolic cysteine aminotransferase is identical with cytosolic aspartate aminotransferase (L-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.