Abstract
Paenibacillus sp. A11 produced an intracellular cyclodextrinase (CDase), its presence was confirmed by activity detection on an agar plate with specific screening medium containing β-cyclodextrin (β-CD) and phenolphthalein. The CDase was purified up to 22-fold with a 28% yield. The enzyme was a single polypeptide with a molecular weight of 80 kDa. Optimum activity was at pH 7.0 and 40 °C. The enzyme had an isoelectric point of 5.4 and N-terminal sequence was M F L E A V Y H R P R K N W S. When relative hydrolytic activities of the CDase on different substrates were compared, it was found that high specificity was exerted by β-CD while maltoheptaose, its linear counterpart, was only 40% as active. The enzyme recognized α-1,4-glucose units and the hydrolysis depended on the size of oligosaccharides. Highly branched carbohydrates such as glycogen or dextran or other heteropolymers as glucomannan could not be hydrolyzed. This enzyme was different from other CDases in its ability to hydrolyze maltose and trehalose, though with very low hydrolytic activity. The major product from all substrates was maltose. The k cat/ K m value for β-CD was 8.28 × 10 5 M −1min −1. The enzyme activity was completely inactivated by 1 mM N-bromosuccinimide and diethylpyrocarbonate suggesting the crucial importance of Trp and His for its catalytic activity. Essential Trp was confirmed to be at enzyme active site by substrate protection experiment. Partial inactivation by 5 mM phenylglyoxal suggests the involvement of Arg, which has never been reported in other CDases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.