Abstract

5,10-Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain ΔH was purified to homogeneity with nearly complete recovery. The aerobically stable monofunctional enzyme catalyzed the reversible oxidation of 5,10-methylene-5,6,7,8-tetrahydromethanopterin to its 5,10-methenyl derivative. For the reaction a midpoint potential Eo′ = −362 mV was calculated at 60°C. The methanogenic electron carrier coenzyme F420 was strictly required as the co-substrate. The dehydrogenase (Mr 216000) was purified as an apparent hexamer of six identical 36 kDa subunits. Oxidation of 5,10-methylenetetrahydromethanopterin coupled to coenzyme F420 reduction catalyzed by the dehydrogenase with a turnover number of 2400 s−1 proceeded via a ternary complex mechanism. High concentrations of monovalent cations markedly stimulated the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.