Abstract

Tissue inhibitor of metalloproteinases-1 (TIMP-1) is an endogenous inhibitor of matrix metalloproteinases (MMPs) with reported tumor promoting, as well as inhibitory, effects. These paradoxical properties are presumably mediated by different biological functions, MMP-dependent as well as -independent, and probably related to TIMP-1 levels of protein expression, post-translational modifications, and cellular localization. TIMP-1 is an N-glycosylated protein that folds into two functional domains, a C- and an N-terminal domain, with six disulfide bonds. Furthermore, TIMP-1 is processed in the N-terminal sequence. These three biochemical properties make TIMP-1 difficult to produce in conventional bacterial, insect, or yeast expression systems. We describe here a HEK293 cell-based strategy for production and purification of secreted and N-glycosylated recombinant his6-tagged human TIMP-1 (his6-rTIMP-1), which resulted in large amounts of highly purified and bioactive protein. Matrix-assisted laser desorption ionization mass spectrometry confirmed the N- and C-termini of his6-rTIMP-1, and N-glycosylation profiling showed a match to the N-glycosylation of human plasma TIMP-1. The his6-rTIMP-1 was bioactive as shown by its proper inhibitory effect on MMP-2 activity, and its stimulatory effect on cell growth when added to the growth medium of four different breast cancer cell lines. This study provides an easy set-up for large scale production and purification of bioactive, tagged recombinant human TIMP-1, which structurally and functionally is similar to endogenous human TIMP-1, while using an expression system that is adaptable to most biochemical and biomedical laboratories including those that do not perform protein purifications routinely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call